Font : Tahoma

 14 ����Ҿѹ��  2557

 

�������Ǻ�����ҹ���;����������ʴط�᷹�ٹ�������

Geopolymer for Cement

�Ǻ�����������ҹ���;����������ʴط�᷹�ٹ������� �ҡ���䫵�㹻������ ���ͤ����дǡ㹡���֡�ҾѲ��¡�дѺ���� ����Ѻ�����ʹ㨷����

������������ �� �����⹫���ࡵ �Դ�ҡ��÷ҧ�óմԹ�Թ��� ��Сͺ���� ���ԡ�Ҩҡ ����ź ������͡��� ��Ҫҹ���� ��һ��������ѹ ����Թ�Ҩҡ ��������� �Թ�����  �Թ�� ������繼������´ ����Ѵ��ǹ Si/Al = 1.98 �ҡ�е�鹻�ԡ����� ���´�ҧ�Ѵ �ǡ NaOH, Na2SiO3 ��������س����� 60 +- 20 �����س�������ͧ �ҹ 2-3 �ѹ ��������������� ����秵����Ẻ�������͹��յ ���ô ��� �����Ѵ���͹���

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

�ѷá�� ������ :

�Ţͧ Na2O SiO2 ��� H2O ������ѵԢͧ���;��������ҹ������.
(EFFECTS OF Na2O SiO2 AND H2O ON PROPERTIES OF FLY ASH BASED GEOPOLYMER)

�.����֡���Է�ҹԾ�����ѡ : ��.��.���Ըѹ�� ������������,

�.����֡���Է�ҹԾ������� : Prof. Shigetaka Wada, D.Eng, ��.�Ҩ���� ���ùԵ�, 82 ˹��.

 

�ҹ�Ԩ�¹���֡�Ҷ֧���������㹡���ѧ��������;��������������õ�駵鹤�������� ����ź ��������������δ�͡䫴� ��������������������ࡵ����ѡ ���ա�û�Ѻ����¹����ҳ��� ������͡䫴� �������ź (���ԡ�) ���ʹ٤���ᵡ��ҧ�ҧ���ѵԢͧ���;�����������ѧ�������� ��кǹ����ѧ��������;��������������ҡ��������������ࡵ����������δ�͡䫴�ŧ㹹�ӡ��� �ǹ��������ҡѹ �ҡ���������ѵ�شԺ�����������������źŧ��������·���������� �ǹ�������ҡѹ�� �ҡ���෢ͧ��������ŧ����Ẻ �Դ�����Ǻ������س�������ͧ���� 60 ͧ�������� ������ 48 ������� ��ѧ�ҡ 7 �ѹ���Ǩ֧��价��ͺ���ѵԵ��� �š�÷��ͧ����� ��к��������õ�駵�����������������������������ࡵ ����ͼ�����ѵ�شԺ��ҡѺ����������Сǹ������� �ͧ����ա���秵�����ҧ�Ǵ���� �������ö��͡��������Ẻ�� �ѧ��鹼���Ԩ�¨֧�����ӡ�÷��ͧ�Ѵ��Ҥ������ç������ѵ����� ��� ���������õ�駵���������-��������������δ�͡䫴� ���;�����������ѧ���������ա����ŵ�Ƿ��� ����͹Ө��;��������������价��ͺ���ѵԵ�ҧ� ����� ����ͻ���ҳ�Ѵ��ǹ�ͧ���������� �������ç�ͧ���;��������Ŵŧ ����ͻ�Ѻ����¹�Ѵ��ǹ�ͧ������͡䫴� �ҡ 0.5 ��� 1.0 ��� �������ç�դ��������� ������������Ѵ��ǹ�ͧ������͡䫴� �ҡ 1.0 �� 1.5 ��� �з����������çŴŧ �������������ҳ����ź (���ԡ�) �觼����������ç�ͧ���;��������������� �������������س�����㹡�ú��������ҧ�ҡ�س�������ͧ��� 60 ͧ�������� ����ҷ��������ö�ѧࡵ��繼Ţͧ����ҳ��� ������͡䫴� ��Ы��ԡ� ����յ�����ѵԢͧ���;����������Ѵਹ���

 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

����á����ͧ����ô�㹨��;��������͹��յ�ҡ��Ҷ�ҹ�Թ�����������Ǵ��������

Chloride Penetration of Fly Ash-based Geopolymer Concrete under Marine Environment

��Թ��� �ʹ�ǧ��1 ��� ������ ����2*  Charin Seanawong1 and Wichian Chalee2*

1 �ѡ�֡�� �Ҥ�Ԫ����ǡ����¸� ������ǡ�����ʵ�� ����Է����º�þ�

2 ��������ʵ�Ҩ���� �Ҥ�Ԫ����ǡ����¸� ������ǡ�����ʵ�� ����Է����º�þ�

* Corresponding Author, Tel. 08-9791-5171, E-mail: wichian@buu.ac.th

���Ѵ���

�ҹ�Ԩ�¹���֡�ҼŢͧ��������鹢ͧ��������������δ�͡䫴� (NaOH) ��͡���á����ͧ����ô� ��С�áѡ�纤���ô�㹨��;��������͹��յ�ҡ��Ҷ�ҹ�Թ����������Ǵ����������������;��������͹��յ�ҡ��Ҷ�ҹ�Թ����������������ࡵ (Na2SiO3) ��� ������δ�͡䫴�(NaOH) �����������鹢ͧ�������� NaOH��ҡѺ 8, 10, 12 ��� 14 ������ ��˹��ѵ����ǹ�ͧSi/Al �������ҡѺ 1.98 ���͵�����ҧ���;��������͹��յ�ٻ�ç�١��ȡ좹Ҵ 200x200x200 ��3 ��к���͹��յ��ҡ�Ȩ������ؤú 28 �ѹ ��ѧ�ҡ��� �ӵ�����ҧ�͹��յ����������Ǵ�������� ������ 180 �ѹ �纵�����ҧ����з��ͺ����ҳ����ô������ (��ô�������) ��л���ҳ����ô������ (���ӷ������) 㹨��;��������͹��յ �ӹdz�Ҥ���������Է������á����ͧ����ô�(Dc) ���顮��ͷ���ͧ�ͧ�Ԥ (Fick�s Second Law) ��ʹ���һ���ҳ��áѡ�纤���ô�㹨��;��������͹��յ �š���Ԩ�¾���� ����á����ͧ����ô�����������Է������á����ͧ����ô�㹨��;��������͹��յ�ҡ��Ҷ�ҹ�Թ �դ��Ŵŧ����ͤ�������鹢ͧ�������� NaOH �٧��� ��ʹ�������Тͧ����ҳ����ô���ѡ���������º�Ѻ����ҳ����ô������ �դ��������鹵����������鹢ͧ�������� NaOH ����٧���

���Ӥѭ: ���;��������͹��յ ��Ҷ�ҹ�Թ ����á����ͧ����ô� ��áѡ�纤���ô� ��������鹢ͧ NaOH ������Ǵ�������ž��������͹��յ�ҡ��Ҷ�ҹ�Թ �դ��Ŵŧ����ͤ�������鹢ͧ�������� NaOH �٧��� ��ʹ�������Тͧ����ҳ����ô���ѡ���������º�Ѻ����ҳ����ô������ �դ��������鹵����������鹢ͧ�������� NaOH ����٧���

���Ӥѭ: ���;��������͹��յ ��Ҷ�ҹ�Թ ����á���

�ͧ����ô� ��áѡ�纤���ô� ��������鹢ͧ NaOH ������Ǵ��������

 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

�֡�����ѵ��ԧ�Ţͧ��ʴب�������������Өҡ�Թ�����������ź

Study on mechanical properties of geopolymer material made of diatomite and rice husk ash.

��Ңͧ�ŧҹ ��������ɰ ������ ���ʻ�Шӵ�� 4805150  �Ң��Ԫ� ����ص��ˡ���

�Ҩ�������֡�� ��.��.���Թ��� ����ѡ��

���Ѵ���

�ҹ�Ԩ�¹�.�繡���֡�����ͧ��㹡�ü�Ե������������ҡ�Թ�����������ź ��è���������������ʴ����������ҹ�������ö��ҹ��᷹�ٹ��������� ���ѧ��������ҡ�ѵ�شԺ�������ǹ��Сͺ�ͧ���ԡ���������Թ�����ѡ ����ͼ���Ѻ��ҧ������δ�͡䫴� ���������ࡵ ��С�е�鹴��¤�����͹ ����ö��͵�������ѧ�Ѻ�ç�Ѵ�� �ҹ�Ԩ�¹����ӡ���֡���Է�ԾŢͧ�ѵ����ǹ�Թ���Ҽ������ź �س����������������㹡�ú�� ����յ�����ѵ��ԧ�Ţͧ��ʴب����������췷��Өҡ�Թ�����������ź �ҡ����֡�Ҿ�����ѵ����ǹ�ͧ Si/Al �س�������Ъ�ǧ����㹡�ú������������㹡���ѧ�����������������ҡ�Թ���Ҽ������ź��� �ѵ����ǹ 13:1 �¹��˹ѡ ����س����� 65-75 c ������ 3 �ѹ����ӴѺ ���ѧ�Ѻ�ç�Ѵ�ͧ��ʴب����������� ����ѧ������ҡ�Թ���Ҽ������ź��ͻ���ҳ 250 ��./��.2

 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

��ʴب�����������ҡ����ź

��.�غ��ѡɳ�  �ѵ��ѡ��� / �.��.��ԭ�� �Թ�һ�����԰

�������Ӣ�/�Ţ���Ӣ� : �Է�Ժѵá�û�д�ɰ� /0801002860

��ʴب�����������ҡ����ź�����û�д�ɰ�������ö������ź�����ҡ�ç�������ç俿�Ҫ����� �������û�Сͺ����������δ�͡䫴�����������Թ����к� �����ô�͡�ԡ�����Ŵ���ᵡ��Ǣͧ��ʴب�����������㹹�� �����������з���������㹡�ü�Ե��ʴب�����������ҡ����ź����ҳ�٧ �����ʴب��������������Сͺ��������������δ�͡䫴�, ����ź, ���������ࡵ ���������δ�͡䫴� ����ʴب�������������������û�д�ɰ�������Դ���ᵡ����������㹹�� ����դ����������������Ǵ����

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 

�������Ԩ����оѲ�� ���. �շ�� 35 ��Ѻ��� 3 �á�Ҥ� - �ѹ��¹ 2555 299

���ѵԢͧ��������������������ҡ�������������ź

�Է�ԾŢͧ�ѵ����ǹ�ͧ�����µ������ź �ѵ����ǹ Na2SiO3 ��� NaOH ������ú�����¾�ѧ�ҹ�����ǿ

���Ѵ���

�����������ʹͼš���֡���Է�ԾŢͧ�ѵ����ǹ�����µ������ź �ѵ����ǹ�����������������ࡵ(Na2SiO3) �����������������δ�͡䫴� (NaOH) ������ú�����¾�ѧ�ҹ�����ǿ������ѵԢͧ������������ �������� �¡�˹��Ѵ��ǹ����ͧ�����µ������ź�¹��˹ѡ��ҡѺ 100:0, 80:20 ��� 60:40 ���ѵԷ���֡�� ��� ������ͧ��ù�� �������ҡ�á�͵�� ��С�þѲ�ҡ��ѧ�Ѵ㹪�ǧ�� �͡�ҡ����ѧ�ӡ�����º��º���ѧ�Ѵ �����ҡ��ú�����¾�ѧ�ҹ�����ǿ�Ѻ��ú���������ͺ �ҡ�š�÷��ͺ����� ���������������������դ�Ҥ�����ͧ��ù��������鹵���ѵ����ǹ�ͧ Na2SiO3 ��� NaOH ���������� 㹢�з���������ҡ�á�͵���դ��Ŵŧ �͡�ҡ��鹨��������������������觻�Сͺ������������ǹ�ա��ѧ�Ѵ�٧�ش��駡óա�ú�����ͺ��о�ѧ�ҹ�����ǿ �����ҧ�á������ѧ�Ѵ�դ��Ŵŧ�������������ҳ����ź���ǹ��� �¡��ѧ�Ѵ�ͧ���������������������������� �������ź��������ͺ����س����� 85 ͧ�������� ������ 24 ��� 48 ������� �դ���٧���Һ�����¾�ѧ�ҹ�����ǿ 800 �ѵ�� ������ 5 ��� 10 �ҷ�

���Ӥѭ : �������������������� / ������ / ����ź / �����ǿ

��éѵ� �ѵ����� 1*

����Է����¸�����ʵ�� �ٹ���ѧ�Ե �.��ͧ˹�� �.��ͧ��ǧ �.�����ҹ� 12121

��� �ѯ�� �ҡ��2

����Է������Ҫ�ѯ��й�� �Ţ��� 9 ���Ѳ�� �ǧ͹�������� ࢵ�ҧࢹ ��ا෾� 10220

* Corresponding author: E-mail: cburacha@engr.tu.ac.th

1 �ͧ��ʵ�Ҩ���� �Ҥ�Ԫ����ǡ����¸� ������ǡ�����ʵ��

2 �Ҩ���� �Ң�෤����ա�á�����ҧ ���෤������ص��ˡ���

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

��.�Ҩ���� ���ùԵ�

Dr.Parjaree Thavorniti

                                

          Department :        Ceramics Processing Lab

          Division        :        Ceramics Technology Research Unit

          Position        :        Senior Researcher

          Education     :        Ph.D., Materials Science, The University of Tokyo, Japan

          E-mail          :        parjaret 

          Telephone     :        025646500 ext. 4233

 

Research Projects :

1.       Behaviors and Properties of Porous Geopolymer from Inorganic Substances /
 ����֡�Ҿĵԡ�������Դ������ѵԢͧ������������Ẻ��ع��Ǩҡ��û�Сͺ͹Թ�����

2.       Utilisation of Thai kaolinitic clay in geopolymer synthesis /
�����Թ���㹻������㹡���ѧ��������;��������

3.       Synthesis of geopolymer using industrial waste /
 ����ѧ��������ʴب��;������������ͧ������Тͧ����ͷ�駨ҡ�ص��ˡ���

4.       Development of ceramic glaze for latex glove former /
 ��þѲ�����ͺ����ԡ������Ѻ����������ا����ҧ

5.       Recovery of Rubber and Inorganic Substances from Sludge Waste in Natyral Rubber Latex Industry and Their Applications /
 ����¡�����ҧ������͹Թ������͡�ҡ�ҡ�С͹�ͧ������ص��ˡ�������ҧ��С�û���ء����

6.       Synthesis of geopolymer using rice husk silica and Al - waste from aluminium industry /
����ѧ��������;��������ҡ���ԡҨҡ����ź��Сҡ�ͧ���·���Դ�����ص��ˡ�����Ե����������

7.       Effects of Glass Composition on Properties of Glass-ceramic sealant for SOFCs /
�Ţͧ�ٵ���ǵ�����ѵԢͧ��������ԡ�������Ѻ����������ԧ

8.       The Development of Alumina Forming by Injection Molding Technique /
��þѲ��෤�Ԥ��â���ٻ�����Թ�����Ըա�éմ����ٻ

9.       Possible applications for municipal solid waste ash /
��ùӢ����Ҩҡ����Ң���������ª��

10.     Utilization of hydrometallurgical zinc waste in production of ceramic materials /
��������ª��ҡ�ҡ����ѧ����㹼�Ե�ѳ������ԡ��

11.     Conversion of zinc hydrometallurgical waste to glass-ceramic materials /
��ùӢͧ���¨ҡ��кǹ��ö�ا�ѧ�����Ҽ�Ե��ʴػ���������-����ԡ��

12.     Feasibility study for the production of silicon carbide-based materials /
����֡�Ҥ��������㹡�ü�Ե��ʴ�㹡�������ԡ͹����亴�

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

�š�з��ͧ��ǹ�������س����Ե�͡��ѧ�Ѵ�ͧ�������������ʵ���Өҡ����ź-���͡��������Ҷ�ҹ�Թ

Title Alternative      Effect of Mix Composition and Temperature on Compressive Strength of Rice Husk � Bark Ash and Fly Ash Based Geopolymeric Paste

�����ѡ��� ��Ѻ����Է���

����Է�����෤����վ�Ш�����Ҹ�����. ��Ф����ʵ���ص��ˡ������෤�����. �Ң��Ԫ����ǡ����¸�

Subject         keyword: ������������ ; Geopolymer

Abstract: ����֡�Ҥ��駹�����ѵ�ػ��ʧ�������֡�Ҷ֧�š�з��ͧ�ѵ����ǹ�����ҧ���˹ѡ�ͧ��õ�駵鹵�͹��˹ѡ������ (s/t) �ѵ����ǹ ��Ҷ�ҹ�Թ�������ź-���͡��� (FA:RHBA) ��������鹢ͧ������δ�͡䫴� (NaOH) ��� �ѵ����ǹ�ͧ���������ࡵ��� ������δ�͡䫴� (Na2OSiO2:NaOH)�¹��˹ѡ��͡��ѧ�Ѵ ����ѵ�ҡ���Դ��ԡ����Ңͧ�������������ʵ� �͡�ҡ����ѧ�֡ �Ҷ֧�š�з��ͧ�س����Ԣͧ��ʴ� � ���Ң�м�� ����س����Է����㹡�ú����͡��ѧ�Ѵ����ѵ�ҡ���Դ��ԡ����Ңͧ����� ��������ʵ� �����ǡѹ ������ҧ�������������ʵ��ٻ�ç��к͡��Ҵ��鹼�ҹ�ٹ���ҧ 3 ૹ������ �٧ 6 ૹ������ �١���� ������ͷ��ͺ���ѧ�Ѵ������� 3, 7, 14, 28 ��� 90 �ѹ ��ǹ��÷��ͺ�Ҥ���ѵ�ҡ���Դ��ԡ����� ����ô �Ԥ�ԡ����繡ô��͹ �Ѵ ������¨��;�������ʵ������ط���˹� �¹��˹ѡ͹��Ҥ����ѧ���������١�ѹ��ɰҹ�����͹��Ҥ��ǹ����ѧ���ӻ�ԡ����� �š���֡�Ҿ���� ������ѵ����ǹ�����ҧ���˹ѡ�ͧ��õ�駵鹵�͹��˹ѡ����������դ���ҡ����觼�������ѵ����ǹ��ӵ����ʴػ�� �ҹ���ǹ����������������ʵ��դ�ҹ���ŧ ��觷������ѧ�Ѵ�դ���٧��� ����ѵ����ǹ��Ҷ�ҹ�Թ�������ź-���͡��������� 40: 60 ����ҡ��ѧ�Ѵ�٧����ش �¤�ҡ��ѧ�Ѵ������� 28 �ѹ�դ����ҡѺ 510 ��/��2 ��о�����������������ҳ����ź-���͡�������٧����� ������ 30:70, 20 ���� 0:100 ������ç���ҧ����������������ʶ��� �Դ��â��µ�����ᵡ���� ���ҧ�Ѵਹ ��������鹢ͧ����� �δ�͡䫴�������ռŵ�͡��ѧ�Ѵ�ͧ�������������ʵ��������������ѧ�ҡ 28 �ѹ�¡����������δ�͡䫴����դ���������٧��鹷� ����þѲ�ҡ��ѧ㹪�ǧ���ػ��´բ�� ��о�����ѵ����ǹ�ͧ���������ࡵ���������δ�͡䫴����������㹡�ü�Ե��ʴب��� ���������դ����ҡѺ 2.5 �¹��˹ѡ �͡�ҡ��龺����س����Ԣͧ��ʴ� � ���Ң�м�� �ռŵ�͡��ѧ�Ѵ���ҧ����չ���Ӥѭ ��ǹ��ú���� �����������ʵ�����س����� 60 ͧ�������������� 24 ������� �觼������ѧ�Ѵ�ͧ�������������ʵ��٧�������������ѹ��� ����Ǥ�͵�����ҧ����� s/t ������ 65, �Ѵ��ǹ FA:RHBA = 40:60, ����դ�������鹢ͧ NaOH ��ҡѺ 18 �������, ���Ѵ��ǹ Na2OSiO2:NaOH ��ҡѺ 2.5:1 �ա��ѧ�Ѵ������� 28 �ѹ ��ҡѺ 510 ��/��2 ������ú������س�������ͧ����ա��ѧ�Ѵ�٧�֧ 492 ��/��2 ������������ 3 �ѹ ��Һ������س����� 60 ͧ�������� ������ 24 ������� �š�÷��ͺ�ѵ�ҡ���Դ��ԡ����Ңͧ�������������ʵ��ʴ���������� ͹��Ҥ�ͧ��Ҷ�ҹ�Թ�ӻ�ԡ��������ǡ���͹��Ҥ�ͧ��� �ź-���͡��� ��С�÷���Ӥѭ����ش��辺㹡���Ԩ�����ǹ����� �͡�ҡ�����Тͧ����Դ��ԡ����Ңͧ��õ�駵����� �س�Ҿ�ͧ �ç���ҧ����Ҥ�ͧ��û�Сͺ��������������ռŵ�͡��ѧ�Ѵ�ͧ�������������ʵ��蹡ѹ

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

          ��ԭ�� �Թ�һ�����װ ��� ����Ԩ��

          �Ӣ��Է�Ժѵ� �Ţ���Ӣ� 0801002860 ����ͧ ��ʴب�����������ҡ����ź

���ç�Է��

�ӹѡ�ҹ�Ѳ���Է����ʵ�����෤�������觪ҵ�  ����Է����¢͹��  ����Է����º�þ�  ��� ����Է�����෤����վ�Ш�����Ҿ�й���˹��

 ����� ���������ͧ�� �����Ӥѭ�ͧ�ѭ��

    㹻Ѩ�غѹ�ա��������ź����Դ����ª���ҡ��� �� ���������ûͫ��ҹ����Ѻ�٫��������С��ʡѴ���ԡҨҡ����ź �¡��������ź����ûͫ��ҹ����ö᷹���٫�����������ҳ������ 30-50 ��ҹ�� ��ǹ���ʡѴ���ԡҨҡ����ź��� �����ԡҷ���Ե���������ͻ��٧ ��ͧ��ҹ��кǹ��áӨѴ�����ͻ���� ���������������㹡�кǹ��ü�Ե

��ػ෤�����

    ������������ (Geopolymer) ��������������ҹ�������ö��᷹�ٹ�����������Ź���� �Ѩ�غѹ���ա�ü�Ե��ʴب�����������ҡ��ҵ�ҧ� �·���仾�������������ѡ��Ҿ㹡�ü�Ե��ʴب����������� �֧�էҹ�Ԩ���ҡ��·������鹡�������ª��ҡ������ ��й��������չѡ�Ԩ���ѹ��ʹ㨡�ü�Ե������������ҡ��Ҫ�Դ���� �ҡ��� �� ����ź �繵� ���ҧ�á�����ʴب��������������Ե���ѧ�դس���ѵԷ���ͧ���Ѻ��û�Ѻ��ا�蹤س���ѵԷ���ͧ���Ѻ��û�Ѻ��ا �蹤س���ѵԡ��ᵡ���㹹�� ���ͧ�ҡ�پ�ع����ҡ�ͧ����ź ���͡�â��µ�Ǣͧ�����������������ҧ���ͺ �·���仨֧�ѡ�ա�ü�������¡Ѻ����ź��Ҵ��¡ѹ ���ͻ�Ѻ��ا�س���ѵԷҧ����Ҿ �ա���ͧ���Сͺ�ͧ����ź�ջ���ҳ���ԡ��٧���������� 80 ���᷺����ջ���ҳ����Թ��������� ��ü�Ե��ʴب�����������ҡ����ź�֧���繵�ͧ����������Թ�������������� ����Ҩ���Ҩҡ������ ���ʹԹ����� �»���ҳ�����㹡�ü������ջ���ҳ���ҧ��������� 40 ���������ҡ�ü�Ե��ʴب�����������ҡ����ź�ѧ�����ѭ�� ����ѧ�繡�������ª��ͧ����ź�����ҧ���������ѡ �ѧ��� ��û�д�ɰ���֧�ʹ����Ըռ�Ե��ʴب�����������ҡ����ź���������ź㹻���ҳ�٧ ����٧���������� 90 �֧������������ź����ҳ�٧

 �ش�蹢ͧ෤�����

    ��ʴب���������÷��������Դ���ᵡ����������㹹�� ���������ʴب�����������ҡ����ź����ա��ѧ�Ѻ�ç�Ѵ�����§�Ѻ��ʴب�����������ҡ������ ����դ����������������Ǵ���� ��ҧ� ������дԹ�ô �Թ��� ���͹�ӷ���

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

��.�Դ���԰������������ҡ�ź-���͡��鷴᷹�����ٹ�������   

�� �� �Ѵ �֡ �ѹ �ѹ��� ��� 5 ��Ȩԡ�¹ �.�. 2550 15:32 �.

          �ѡ�Ԩ�� �.�͹�� �매Դ�鹹����͡����������ź �Ԩ�¼�Ե�԰���ҧ��ҹ����ö��᷹�����ٹ���������� ���ء����ҹ�ҹ�����԰������

�.��.��ԭ�� �Թ�һ�����԰ ��.�ٹ���Ԩ����оѲ���ç���ҧ��Űҹ���ҧ����׹ �.�͹�� �Դ�¡���֡���Ԩ�¼�Ե�ѳ�����Ե�ҡ������������ ��� ����Ԩ���Դ�ҡ�ǤԴ��ù� ��Ҷ�ҹ�Թ���������� ����繼ž�����ҡ����Ҷ�ҹ�Թ�ԡ乵� ���͹Ӥ�����͹仼�Ե�����俿�� �� �ç俿��������� ��Ҷ�ҹ�Թ�������ͨҡ����������� ����¢��仵���ҡ����͹ ��ж١�ѡ�Ѻ���������§���ҹ���� ��ҷ�������դس���ѵ�㹡�����������ҹ����ͼ���Ѻ��� �֧���ǤԴ㹡�ù������� ���� 㹧ҹ������ҧ᷹�ٹ�������

�Ѩ�غѹ �դ������������оѲ����ë���������� �������ٹ�����������Ź�� �������ûͫ��ҹ����Сͺ������ë��ԡ� �������Թ� ��ͧ���Сͺ㹡�÷���ʴث������ ������¡��� ������������ ���� ��ѡ��âͧ��÷ӻ�ԡ����Ңͧ���ԡ� (Si) �������Թ�� (Al) ��������š���١����ѡɳТͧ�������� �¡�÷ӻ�ԡ������١�����Դ�ҡ���ԡ͹ �������Թ�� �����������·���繴�ҧ�٧ ���������͹�繵�ǡ�е�� ������ë������������ö�Ѻ���ѧ��

�.��. ��ԭ�� �������� ������������ ����ʴ���ü������������ࡵ ������ç���ҧ 3 �Ե� Ẻ��ѳ�ҹ�������á�� Dr. Glukhovsky ��������Ҿ����µ 㹻� �.�. 1950 ��ü�������⹫���ࡵ�ժ������¡�ա���ҧ��� ����û�Сͺ�����������ԡ͹Թ����� ������ͧ������������ ��˹���鹤����á�� Davitodovits ����Ƚ������ 㹻� �.�. 1970 ��� ��ǹ����ͧ���ҵ� ����Դ�ҡ��ԡ����ҷҧ�ó����

��ǹ��Сͺ�ҧ��բͧ��ʴع�������͹�Ѻ�����ŵ� ���ç���ҧ�������ٻ��ѳ�ҹ ���� �������� ��ҡ��ʴط������û�Сͺ���ԡ��������Թ�� �ҡ�е�鹴��´�ҧ ��кǹ��÷ҧ��շ������ǡѺ����Դ������������ ᵡ��ҧ�Ѻ�ʵ�ͧ�ٹ�����������Ź�����ҧ�ҡ �׺���ͧ�ҡ�����������ʴط����ͧ���Сͺ�ҧ��ի�觻�Сͺ���¸ҵث��ԡ� (Si) �������Թ�� (Al) ���ª�Դ ������ҧ�� �����«����ҡ��кǹ��ü�Ե�����俿�� ����ź��ҡ�ç�բ��������ç�ҹ��Ե�����俿�Ҿ�ѧ�ҹ�ź ��Ҫ�����Ũҡ�ç�ҹ��Ե�����俿�� ���Թ�Ҩҡ��鹷���Ҥ�˹����дԹ��Ǩҡ��鹷�����dz�ѧ��Ѵ�йͧ

㹢�з����ǹ���㹡�ü�Ե�����������������Ҷ�ҹ�Թ���������� ����繼ž��������Դ�ҡ��кǹ��ü�Ե�����俿�� �����ѧ�ҹ������͹�����ҡ����Ҷ�ҹ�Թ��Դ㴡��� ��Ҷ�ҹ�Թ��������͹���֧����� ���� ��-��ӵ�� �֧ ��ӵ��ᴧ ���� ��ӵ������ͧ ��觢������Ѻ��Դ�ͧ��ҹ�Թ

��ǹ�Ըա��������س����Ԣ���Ҷ�ҹ�Թ ��Ҷ�ҹ�Թ�»��Ԩ����ٻ��ҧ�������ǹ�˭� ����բ�Ҵ��鹼�ҹ�ٹ���ҧ����� 1 �������� �֧ 1 ��������� ͧ���Сͺ��ѡ�ҧ��բͧ��Ҷ�ҹ�Թ��Сͺ���� ���ԡ͹��͡䫴� (SiO 2) ����Թ����͡䫴� (Al 2O 3) �������������͡䫴� (Fe 2O 3) ������ͧ�͡䫴��� 3 ��Դ�դ�����������ҧ������ 50 �֧ 90 �¹��˹ѡ����ź-���͡��� ����ҷ����ҡ�������ʴ�����ͷ�駨ҡ�ص��ˡ�������ɵ� ��������� ���� �մ� ����ź���͡����»���

���ǵ�ͧ���Һ������������������´�����ͧ��� ͧ���Сͺ��ѡ�ҧ��բͧ��� �ź - ���͡�����ǹ�˭�л�Сͺ仴��� ���ԡ͹��͡䫴� (SiO 2) �٧�֧������ 70 �֧ 90 �¹��˹ѡ

�.��.��ԭ�� ������ա��� �Ѩ�غѹ��þѲ����ë�������� �������ش���������ü���������͡������ʴػ�� ��ҹ ���ѧ�ա���Ԩ�����ͼ�Ե��ë�������������繵�ͧ��ٹ��������ա ����ٹ���Ԩ����оѲ���ç���ҧ��Űҹ���ҧ����׹��ӡ���Ԩ�¼�Ե�ѳ�����Ե�ҡ������������ �� �԰ ��÷����᷹�ٹ�����������Ź�� �͡�ҡ��� �ѧ�����������͵�����͢��¹ѡ�Ԩ��੾�зҧ��ҹ��������������觻�����¢�� ������������觻ѹ ��������ѹ�Ԩ������Դͧ������������ǡѺ��ʴ����� ��м�ѡ�ѹ����Դ�����ҹ���ԧ�͹Ҥ�

�ա������͢��¹ѡ�Ԫҡ���ѧ�������ѹ��ѡ�ѹ����ա�ù����������鷴᷹�ٹ������� �¼���Ѻ�ٹ�������㹻���ҳ ������ 20-30 ��觹͡�ҡ�Ъ���Ŵ�����ٹ����������� �ѧ��������Ҥ����觡�����ҧ�դ������ç���ҹ��� �͡�ҡ����ٹ���Ԩ����оѲ��� �ѧ���֡���Ԩ�´�ҹ��ü�Ե��������������ҹ���͹��յ��ع ����繤͹��յ�������������ҹ㹡óշ���ͧ����к�¹�� �� ��÷Ӽ�Ƿҧ�����к�¹�� �� ��÷Ӽ�Ƿҧ�����к�¹�� �ӽҷ���к�¹�� ��о�鹶���ա����

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

�����ç��������� :     ��þѲ�Ҩ�����������͹��յ�ҡ�����ª�Դ C �������ź

�����ç��������ѧ��� :   Development of Geopolymer Concrete from Type C Fly Ash and Rice Husk Ash

���Ѵ��� :     �ѵ�ػ��ʧ��ͧ����֡�ҹ�� ��� �֡�����ѵ����ǹ����ͧ�����ª�Դ C �������ź����������㹡�÷Ө�����������͹��յ����֡���Է�ԾŢͧ�Ѩ��µ�ҧ� ��ͤ�������ö�ӧҹ����С��ѧ�Ѵ�ͧ������������͹��յ��� �����ѵ����ǹ�����������������ࡵ���������δ�͡䫴���ҡѺ 1.0 �¹��˹ѡ �ѵ����ǹ�����Ť��Ŵ�ҧ��������ҡѺ 0.35 ����ѵ����ǹ H2O/Na2O = 17.58 㹡���֡�ҹ���յ���õ�ҧ� ��Сͺ���� �������ҡ�͹�����͹ 1, 6, 12 ��� 24 ������� �س����Ժ����͹ 25, 45, 60 ��� 75 C�����������Һ����͹ 12, 24, 48 ��� 72������� ��������鹢ͧ��������������δ�͡䫴� 10, 15 ��� 20 ������ ����ѵ����ǹ��������ҧ������᷹����������ź������ 0, 5, 10, 15, 20, 25 ��� 30 ���ѧ�Ѵ�١���ͺ������� 1, 3, 7 ��� 28 �ѹ �š�÷��ͺ�ʴ���������� �Ըա�ú������������ ��� �������ҡ�͹�����͹ 1 ������� �س����Ժ����͹ 60 C����������Һ����͹ 48 ������� ���᷹��������´�������ź������������������� 5�����ѧ�Ѵ������ص�ҧ� ��ҡѺ 52.67, 75.67, 68.33 ��� 75.69 ��./��.��. ������� 1, 3, 7 ��� 28 �ѹ ����ӴѺ

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

����෤����� :    ��ʴب�����������ҡ��ҷ�� 

������Ңͧ :  ��.����ԧ �ѡ��͹ / �Ҩ������è�� �Թ����

������ :  rerng197@rmutp.ac.th

����˹��§ҹ :  ʶҺѹ�Ԩ����оѲ�� ����Է�����෤������Ҫ���ž�й��

����Է�����෤������Ҫ���ž�й�� (�ٹ���Թԡ෤�����ʶҺѹ�Ԩ����оѲ��) 399 �.����ʹ �ǧǪ�þ�Һ�� ࢵ���Ե ���. 10300 0-2281-0492

http://www.clinictech.rmutp.ac.th/

���¤� :      ������������     ��ҷ�� 

��͸Ժ�� :

�ҧ��鹷��ͧ������� ���ç俿�Ҿ�ѧ�ҹ�ź����ç�ҹ��ӵ�ŷ�����ź��Ъҹ������������ԧ㹡�ü�Ե�����俿���������ǹ�������ͷ�駤������ź�����Ҫҹ���� �������������ª���觼š�з��������Ǵ�������������ͧ��鹷��ӨѴ�����ҷ�駷���ͧ����ö���ҷ�����ûͫ��ҹ㹧ҹ�͹��յ�����ͧ�ҡ����èӾǡ���ԡ����ͫ��ԡ������������������� ����������ҹ��зӻ�ԡ�������������ҡ��ԡ����� ���êѹ �����������ç�ͧ�͹��յ������� ���ԡ���������������ͧ���Сͺ��ѡ�������ǹ�Ӥѭ��͡�÷ӻ�ԡ����� ��������������૪�蹢ͧ��ʴب����������� �������͹�����ź�����Ҫҹ�����һ�Ѻ��ا�س���ѵԷҧ����Ҿ��������������͹�仼�Ե����ʴػ���ҹ��зӻ�ԡ����ҡѺ��������� �������������͹��������ҡ�ú�������������з��������ʴط�����ç���ҧ������ç �������ö��Ե�繤͹��յ�������ٹ�������

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

��ʴػͫ��ҹ�������ǹ��Сͺ�ͧ��Ҷ�ҹ�Թ����Ի��������ǹ��Сͺ

�ʹ��� : ����Է����¢͹�� (�س�Թ�Ҿ� ���٧�Թ : ���᷹)

͹��Է�Ժѵ�  �Ţ���Ӣ�/���� : 1003001051  �Ţ����¹ : 7250

����� ���������ͧ�鹢ͧ�ŧҹ: ��ʴب����������� ����ʴ����� ��˹�ҷ������ʴ����������ҹ�����ǡѺ��������ʵ� ��ʴط�����Ө��������������鹨е�ͧ��ͧ���Сͺ�ͧ���ԡ��������Թ�ҷ������ѹ�ҹ���������� �� ������ �Թ����� ����ź ��Ҫ����� ���˹ѡ ��Ҫҹ���� ��� �������´�ҧ������繵����觻�ԡ����ҨӾǡ��Ť��ū���ࡵ�����Ť����δ�͡䫴� ��� ���������ࡵ ���������δ�͡䫴� ��Ф�����͹ ��ü�Ե俿�Ҩҡ��ҹ�Թ�Դ�ѵ�ؾ��������繢ͧ���¤�� ��Ҷ�ҹ�Թ (������������˹ѡ) �͡�ҡ����ѧ���ҫ���������͡䫴������ž�ɷҧ�ҡ�Ȩҡ��кǹ������������ ����Թ����ͧ�ӨѴ��ҫ���������͡䫴�з�����Դ��÷ӻ�ԡ����������ҧ��ҫ���������͡䫴�����Թ�ٹ�������Ի���� ����դس���ѵԪ������������Թ���͡�ҡ������������˹ѡ�����ҡ����������ҹ�Թ㹡�кǹ��ü�Ե俿�ҵ����ҧ�� �����繡��Ŵ�ͧ���·���Դ�ҡ��кǹ��ü�Ե俿�Ҩҡ��ҹ�Թ �֧�ա�ù�������������˹ѡ�Ҽ�Ե����ʴب����������� �����������º��º�š���Ԩ�����Ǿ������������ͧ���Сͺ�ͧ���ԡ��������Թҷ������ѹ�ҹ㹻���ҳ�ҡ������ѵ����ǹ�����������֧���������ö�Ѻ�ç�Ѵ�ͧ���������������ҡ�������˹ѡ ��й͡�ҡ������ռ��Ѳ�ҡ�ü�Ե��ʴب�����������ҡ��Ҫ�Դ��ҧ� �����Ŵ�ҹ���ѧ�Ѻ�ç�Ѵ���ᵡ��ҧ�ѹ ���¢�ͨӡѴ��ҹ������͡�����˹ѡ�Ҽ�Ե����ʴب�����������ѧ��ҧ�� ����д�ɰ�֧��Ѳ��������˹ѡ����ö�Ѻ�ç�Ѵ���ҡ��鹴��¡���������������Ի�������ǹ�������Ѻ�Ѵ��ǹ������������� ���������ʴط�����ç�Ѵ�բ�鹨�����ö���������ç���ҧ�Ҥ�� �����ʴء�����ҧ��ҧ��� �� ��� �ҹ ��� �繵� �ش�蹢ͧ�ŧҹ: ����ʴػͫ��ҹ����ա��ѧ�Ѻ�ç�Ѵ������ѵԷҧ����Ҿ�� ���������Ѻ�ҹ�ç���ҧ��С�ü�Ե����ʴء�����ҧ �͡�ҡ����ѧ�繡�ùӢͧ���¨ҡ��ü�Ե俿�Ҩҡ��ҹ�Թ��������Դ����ª�� ��ù�������ª��: ����ö�����㹧ҹ��ص��ˡ���������ҧ

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

��þѲ����Ҩҡ�ç�ҹ�ص��ˡ������鷴᷹�ٹ�����������Ź��           

�ѹ����ʺ�շ�� 02 �á�Ҥ� 2009 ���� 07:00 �.

��� �ѡþѹ��� ǧ���

�Ҥ�Ԫ����ǡ����¸� ������ǡ�����ʵ��  ����Է�����෤����վ�Ш�����Ҹ�����

�ѭ���š��͹���� Global Warming �Ѻ�繻ѭ���дѺ�ҹҪҵԷ��ء����ȵ�ͧ������͡ѹ������ҧ��觴�ǹ ����繷���Һ�ѹ����� ���˵آͧ�ѭ���Դ��鹨ҡ�����Ҥ��ǹ �����Ҩ�������ͧ�ͧ��������ѹ������ԧ��к����� �����ç�ҹ�ص��ˡ��� ������˵آͧ�����š��͹����Ӥѭ�����ѹ�褹��ǹ�˭��ѡ�Ҵ���֧����ͧ����仹�蹤�� ��кǹ��ü�Ե�ٹ�������

㹡�кǹ��ü�Ե�ٹ�������������鹴��¡�����Դ�����Թ�ٹ���ѹ�Ѻ�á ���㹢�鹹����������Դ�ѭ������ͧ�����зҧ�ҡ�� �ѭ�ҽ�蹤�ѹ ��С�÷��������Ǵ���� �ҡ��鹡�͹�Թ��Ҵ�˭����Դ�ҡ������Դ�ж١�������������ŧ��й���������������Ң�鹵͹��ü�Ե�ٹ���������� 㹢�鹹���ͧ������ա�ûŴ����¡�ҫ����͹��͡䫴� (CO2) �͡�Ҩӹǹ�ҡ ���ͧ�ҡ�Թ�ٹ��ǹ�˭��Сͺ仴��������������๵ (CaCO3) ��觡�ҫ����͹��͡䫴����ͧ����繵鹡��Դ�ͧ����Դ�������͹��Ш� ���ա�û����Թ��ҡ�û���¡�ҫ����͹��͡䫴�ҡ��кǹ��ü�Ե�ٹ��������͡���繵���Ţ����� ��� ��ü�Ե�ٹ������� 1 �ѹ�С������Դ��ҫ����͹��͡䫴��͡�� 1 �ѹ�蹡ѹ ��觹Ѻ�繵���Ţ����ҵ�������� ���ͧ�ҡ����Ţ����ش�ҡ�ӹѡ�ҹ���ɰ�Ԩ�ص��ˡ��� (���.) ���ʴ���������һ� 2551 �ա�ü�Ե��Ե�ѳ��ٹ��������������ҳ 35 ��ҹ�ѹ ����շ�駷���˹���㹻����������͡ ����ѧ���Ѻ����֧�ѭ�ҽ�蹤�ѹ��лѭ���к�����ȷ������ �ѧ��鹡��Ŵ����ҳ�����ٹ�������ŧ �����觼Ŷ֧����Ǵ�������բ����Ҿ���

���»ѭ�Ҵѧ����Ǣ�ҧ�� �֧���ա�ü�ѡ�ѹ����էҹ�Ԩ������ǡѺ��þѲ����ǹ����ͧ�͹��յ����դس���ѵ���º������ �������ҳ�ٹ�������������ŧ������������ ���㹪�ǧ�á� �������Ҷ�ҹ�Թ�����Ҫ����ŷ�᷹�ٹ�������ҧ��ǹ���Ѻ�����������ҧ�ҡ ���ͧ�ҡ��س���ѵԢͧ��ʴط��բ�鹷�駴�ҹ���ѧ�Ѵ��Ф������ҹ �������º�Ѻ�͹��յ�����ٹ���������§���ҧ���� ����բ�ͨӡѴ��蹤���ҡ᷹����ҡ�Թ仨��觼����µ����ʴ� ��駹���»��Ԩ�����ö᷹������٧�ش����Թ������ 40 ��鹡Ѻ�س���ѵԢͧ��ʴط����᷹���ٹ������� ��е�ͧ�ա���֡�����ҧ�����´��͹�����ҹ��ԧ ���ҧ�á�� 㹻Ѩ�غѹ���էҹ�Ԩ�·������Ǣ�ͧ�Ѻ��ù���ʴت�Դ�������դس���ѵ������§�Ѻ�͹��յ�������ٹ���������� ���¡��� ������������ (Geopolymer) ���ѧ������㹪�ǧ�ͧ����֡����оѲ�Ҥس���ѵ�

�ѧ����ա�ù�����ҹ��ԧ㹻������

�ҹ�Ԩ�¹��������ǹ˹�觢ͧ������ҹ�Ԩ�´ѧ����� ����Ԩ�»�Сͺ���� ��¨ѡþѹ��� ǧ��� �ѡ�֡�һ�ԭ���͡���ѡ�ٵ����ǡ����¸� ����Է�����෤����վ�Ш�����Ҹ����� ��йѡ�֡����ç��û�ԭ���͡�ҭ������ɡ (���.) ��蹷�� 7 ������ô��Ţͧ ��.��. ���ز� ���õ���� ��� �.��. ��� �ҵ�þԷѡ���� ����Ҥ�Ԫ����ǡ����¸� ������ǡ�����ʵ�� ����Է�����෤����վ�Ш�����Ҹ����� �����֡�ҡ�����͡����ʴػ�������Ҩҡ�ç�ҹ�ص��ˡ��� ���� ����ź-���͡��� �����Ҷ�ҹ�Թ�ҡ��кǹ��ü�Ե俿�� ������ʴص�駵�㹡�ü�Ե �ѧ��� �ҡ�ͧ��Ҿ���ҧ� ������ö���������ҧҹ�Ԩ�¹�����Ŵ�����������Ѻ�ç�ҹ�������� Ŵ�ѭ�ҽ�蹤�ѹ����������������������dz��� �ա����ѧ����Ŵ�ѭ���š��͹����ա�ҧ˹�觴���

���ͧ�ҡ����ź-���͡����������㹧ҹ�Ԩ�¹����ͧ���Сͺ�ҧ��������������ѡ �֧��ͧ�ա�û�Ѻ��اͧ���Сͺ�ҧ������� �¡�ü���Ѻ��Ҷ�ҹ�Թ�ҡ�ç俿�����������س���ѵԷ��բ�� �����ͧ����ͧ���Сͺ��մѧ����Ǣͧ��ҷ���ͧ��Դ������ٻ�����������ӻ�ԡ����� �֧��ͧ���������´�ҧ������������ͧ���Сͺ�������ҹ�鹾���������Դ��ԡ�������ШѴ���§�ç���ҧ������� ���㹧ҹ�Ԩ�ª�鹹������������ҧ������ 10 ��ǹ��� ����ö���͡���� 3 ����� ���� 1. ����֡�Ҽš�з��ͧ�ѵ����ǹ����ź-���͡�������Ҷ�ҹ�Թ 2. ����֡�Ҽš�з��ͧ�Ѵ��ǹ���ͻٹ����ͤ͹��յ ��� 3. ����֡�Ҽš�з��ͧ�ѵ����ǹ�ͧ���ǵ�ͻ���ҳ��ҵ�ͤس���ѵԷҧ����Ҿ�ͧ������ҧ

�ҡ�ҹ�Ԩ�¾���ҡ��ѧ�Ѵ������繷���Ҿ�� ���㹢�鹵鹹������ö��Ե������������͹��յ����ա��ѧ�Ѵ�٧�ش��֧ 350 ���š���/���ҧૹ������ ������� 28 �ѹ �����º��ҡѺ�͹��յ�����ҹ㹡�á�����ҧ�Ҥ����ж������� ����ѧ����ö�к���֧�Ѩ��·��Ǻ������ѧ�Ѵ�ͧ������������͹��յ �������繾�鹰ҹ㹡�õ���ʹ�ҹ�Ԩ�µ���

㹢�鹵鹹���ѧ���ա���֡�����������ҹ�س���ѵ�੾�е�Ǣͧ���������������Ե�ҡ����ص��ˡ������������ �� ��ë����ҹ��� �繵� ��觤س���ѵ����ǹ����դ�����ҧ�ҡ�͹��յ����Ե�ҡ�ٹ��������͹��ҧ�ҡ �ѧ��鹡�ùӨ��������������ҹ��õ�ͧ�Ԩ�óҤس���ѵ�㹴�ҹ���Ǻ���ѹ��������������й����ҹ���������� ������� ����ѧ��ͧ�ա���֡������������ͻ�Ѻ��ا�س���ѵ����բ�鹵���

 

����� ��ЪҤ��Ԩ�©�Ѻ��� 85

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

˹ѧ��;�����ҹ���ͧ 6 ���Ҥ� 2557

 

�ҡ�������Ҥ����ɵ�-��ҹ�Թ��дԹ����� ���������ʴػͫ��ҹ ��ʴء�����ҧ��Ҵ ���ҹ ��ʹ��� ������Եõ������Ǵ����

�Ѩ�غѹ����Ǵ��������繸����ҵ� ���㹪�������ͧ��з�ͧ�������������ж١����������ҡ��� ���㹢�����ǡѹ������ԭ�ͧ��觡�����ҧ��Ѻ����᷹�ҡ��鹵���ӴѺ �ѹ���˵���мŷ���Ҩҡ㹻Ѩ�غѹ�ӹǹ��Ъҡ�������������������ҧ�Ǵ���� ��Сͺ�Ѻ������ͧ��÷���дǡʺ�� ������ü�Ե��ʴ����͡�á�����ҧ����ӹ�¤����дǡ��ҧ� ����ըӹǹ������դٳ�ҡ����蹡ѹ ��੾�Т�鹵͹㹡�ü�Ե ����觼ŵ�͡�÷��������Ǵ��������觼š�з���������������ٻẺ

��ʴء�����ҧ��Ҵ ���ҹ ��ʹ��� ������Եõ������Ǵ���� ��� �.��.��ԭ�� �Թ�һ�����԰ �Ҩ�����Ҥ�Ԫ����ǡ����¸� ������ǡ�����ʵ�� ����Է����¢͹�� �ѡ�Ԩ�� ��.������Ѻ�ع�����Ԩ�������� ʡ�.���ʹ��ç��á�þѲ����ʴؼ���ٹ���������Ш����������������Ѻ�ع�������������Ԩ�� (�����Ԩ��������) �ҡ�ӹѡ�ҹ�ͧ�عʹѺʹع����Ԩ�� (ʡ�.) ���͡�ü�Ե�ҹ�Ԩ�¤س�Ҿ ������ҧ�ѡ�Ԩ���������դ�������ö�ҧ�Ԫҡ���٧

�.��.��ԭ�� �������� ��ʴء�����ҧ��������ѹ�ҡ����ش㹧ҹ�ç���ҧ��Чҹ���ǡ����¸� ��ͼ�Ե�ѳ��ٹ���������Ф͹��յ �·�������Ե�����ٹ�����������Ź����ص��ˡ���������ҧ ��Шҡ������ԭ����˹�ҷҧ�Է�ҡ��㹡���͡Ẻ�ص��ˡ�����ü�Ե������� ������ص��ˡ���������ҧ�ž�ɵ������Ǵ�����繨ӹǹ�ҡ �ҡ��ûŴ����¡�ҫ����͹��͡䫴�����鹺���ҡ��㹡�кǹ��ü�Ե ���ͧ�ҡ���繵�ͧ���ѧ�ҹ㹡�����ѵ�شԺ�٧�ҡ �֧�Դ�Ǥ����Դ�����ͧ�Ѻ�ѭ�Ҵѧ����ǹ����¡����ٹ�������������ŧ��ҹ�������ʴػͫ��ҹ ��觨Ъ���Ŵ����ҳ��ҫ����͹��͡䫤����Դ�ҡ��кǹ��ü�Ե ᷹���ٹ�����������Ź��ҧ��ǹ㹡�ü�Ե�͹��յ ��С������ʴػ���ҹ��Դ��蹷�����ԵáѺ����Ǵ������᷹�����ٹ������� ��੾�СѺ��ʴب����������� �������鹡���֡��㹡�ù���Ҩҡ����Ҷ�ҹ�Թ �Թ����� �����ҵ�ҧ� ������Ҩҡ�Ҥ����ɵ�����ç�ҹ�ص��ˡ��� ������ʴػͫ��ҹ����Ѻ�����᷹���ٹ�������ҧ��ǹ㹤͹��յ ���������ʴ���ѡ㹡�ü�Ե������������

�ҹ�Ԩ������ǡѺ�ٹ���������Ф͹��յ������ԵáѺ�����ҵԹ���ա�����������ж١�������ҡ��觢�� ��觨з��������������觻�١���ҧ��������ء����ҹ�׹�ҹ�ҡ��觢�� ��ʴؼ���������������ͫ��ҹ����ҡ���ª�Դ ���֡���Ԩ�¤͹��յ�ҷ���ա��˴��ǵ����Ф͹��յ��ع ��������� �������ʴػͫ��ҹ������ѡ�ѹ�ҡ����ش ��Шҡ�ŧҹ�ͧ����Ԩ�¾�����ա�ù�����ҹ���ԧ��ص��ˡ����͹��յ �����ǹ�������֡���ҹ�� ��Сͺ���� ��ҡ��� ��Ҷ�ҹ�Թ �ͧ��駴Թ����� �����Ҩҡ�ç�ҹ�ص��ˡ��� �����ɵá��� �� ����ź�����ź���͡��� ��һ��������ѹ �����Ҫҹ���� �����ûͫ��ҹ����ҹ������ö������㹡�û�Ѻ��ا�س���ѵԢͧ�ٹ�����������Ź���� �ѧ�����ʴء�����ҧ����ҹ������ö���еͺ⨷�����Ѻ���������͡Ẻ��м����ҹ�����觢�� ��觹͡�ҡ���繡�����ҧ�������§���Ѻ����Ȫҵ����� �ѧ���觼Ŵյ�ͤ�����ʹ�����Фس�Ҿ���Ե�ͧ�������ªҵ��ա����

�.��.��ԭ�� ��������������� ��þѲ����л�Ѻ��ا���ѵ���ûٹ���������Ш���������������ջ���Է���Ҿ������觢����������ª���������� �繡���֡�������ͧ�ͧ�������ʴط����͹��Ҥ��Ҵ����дѺ�������������ʴؼ������ �� ��⹫��ԡ� ������������� �������¹�⹤���͹ ������ʴع������ҹ������ö���л�Ѻ��ا��������¹�ŧ���ѵԢͧ��ʴ����������ҹ����դس���ѵԷ��բ�� �� ��÷ӻ�ԡ���������������դ������ç ��������ѵԷҧ俿�� �ҧ���������зҧ�ʧ�ͧ��ʴ����������ҹ����¹�ҡ�������ë��������Ф͹��յ ����Ҩо��֡���ͧ�ʧ���͹Ҥ� ��駹����ʴط��������ջ���Է���Ҿ�٧�����ҹ�������ٻẺ �դ�������ö�ͺʹͧ���ͫ���������ͧ�� ����ʴة�Ҵ (smart material) ����ء������ҹ�����ҧ������¹��ҡ���� �����ʴط���������ҹ������ö���й�������ª����Ҥ�ص��ˡ���������ҧ���͹Ҥ�

����ó� �آ��º��- �ѡþѹ�� �ҷѹ��/�͹��

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

�Ǻ����ҡ����������Ԩ�´�ҹ Geopolymer 㹵�ҧ�����

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Geopolymer

From Wikipedia, the free encyclopedia

Geopolymers are new materials for fire- and heat-resistant coatings and adhesives, medicinal applications, high-temperature ceramics, new binders for fire-resistant fiber composites, toxic and radioactive waste encapsulation and new cements for concrete. The properties and uses of geopolymers are being explored in many scientific and industrial disciplines: modern inorganic chemistry, physical chemistry, colloid chemistry, mineralogy, geology, and in other types of engineering process technologies. Geopolymers are part of polymer science, chemistry and technology that forms one of the major areas of materials science. Polymers are either organic material, i.e. carbon-based, or inorganic polymer, for example silicon-based. The organic polymers comprise the classes of natural polymers (rubber, cellulose), synthetic organic polymers (textile fibers, plastics, films, elastomers, etc.) and natural biopolymers (biology, medicine, pharmacy). Raw materials used in the synthesis of silicon-based polymers are mainly rock-forming minerals of geological origin, hence the name: geopolymer. Joseph Davidovits coined the term in 1978[1] and created the non profit French scientific institution (Association Loi 1901) Institut Géopolymère (Geopolymer Institute).

According to T.F. Yen[2] geopolymers can be classified into two major groups: pure inorganic geopolymers and organic containing geopolymers, synthetic analogues of naturally occurring macromolecules. In the following presentation, a geopolymer is essentially a mineral chemical compound or mixture of compounds consisting of repeating units, for example silico-oxide (-Si-O-Si-O-), silico-aluminate (-Si-O-Al-O-), ferro-silico-aluminate (-Fe-O-Si-O-Al-O-) or alumino-phosphate (-Al-O-P-O-), created through a process of geopolymerization.[3] This mineral synthesis (geosynthesis) was first presented at an IUPAC symposium in 1976.[4] However, very often, scientists are taking the 1991 publication as starting reference.[5]

The microstructure of geopolymers is essentially temperature dependent:

It is X-rays amorphous at room temperature,

But evolved into a crystalline matrix at temperatures above 500 °C.[6]

 One can distinguish between two synthesis routes:

In alkaline medium (Na+, K+, Li+, Ca++, Cs+ and the like);

In acidic medium with phosphoric acid and humic acids.

 

The alkaline route is the most important in terms of R&D and commercial applications and will be described below. Details on the acidic route are to be found at the references[7] and[8]

Six different definitions of the term geopolymer[10]

 

For chemists[11]

'...It is known that alkali-activated aluminosilicates are able to produce alumino-silicate geopolymers. The hardening mechanism involves the chemical reaction of geopolymeric precursors, such as alumino-silicate oxides, with alkali polysilicates yielding polymeric Si�O�Al bonds.'

For geopolymer chemists[12]

'...Geopolymers consist of a polymeric Si�O�Al framework, similar to zeolites. The main difference to zeolite is geopolymers are amorphous instead of crystalline. The microstructure of geopolymers on a nanometer scale observed by TEM comprises small aluminosilicate clusters with pores dispersed within a highly porous network. The clusters sizes are between 5 and 10 nanometers.'

For geopolymer material chemists[13]

'...The reaction produces SiO4 and AlO4, tetrahedral frameworks linked by shared oxygens as poly(sialates) or poly(sialate�siloxo) or poly(sialate�disiloxo) depending on the SiO2/Al2O3 ratio in the system. The connection of the tetrahedral frameworks is occurred via long-range covalent bonds. Thus, geopolymer structure is perceived as dense amorphous phase consisting of semi-crystalline 3-D alumino-silicate microstructure.'

For geopolymer ceramic chemists[14]

'...Although geopolymer is generally X-ray amorphous if cured at standard pressures and temperatures, it will convert into crystalline ceramic phases like leucite or pollucite upon heating.'

For alkali-cement scientists[15]

'... Geopolymers are framework structures produced by condensation of tetrahedral aluminosilicate units, with alkali metal ions balancing the charge associated with tetrahedral Al. Conventionally, geopolymers are synthesized from a two-part mix, consisting of an alkaline solution (often soluble silicate) and solid aluminosilicate materials. Geopolymerization occurs at ambient or slightly elevated temperature, where the leaching of solid aluminosilicate raw materials in alkaline solutions leads to the transfer of leached species from the solid surfaces into a growing gel phase, followed by nucleation and condensation of the gel phase to form a solid binder.'

For ceramic scientists[16]

'...Geopolymers are a class of totally inorganic, alumino-silicate based ceramics that are charge balanced by group I oxides. They are rigid gels, which are made under relatively ambient conditions of temperature and pressure into near-net dimension bodies, and which can subsequently be converted to crystalline or glass-ceramic materials.'

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Recycling and Utilization of Mine Tailings as Construction Material through Geopolymerization

Lianyang Zhang, Ph.D., P.E.

Department of Civil Engineering and Engineering Mechanics

University of Arizona, Tucson, Arizona

U.S. EPA Hardrock Mining Conference 2012:              

Advancing Solutions for a New Legacy

April 3-5, 2012, Denver, Colorado

Geopolymerization is a relatively new technology that transforms aluminosilicate materials into useful products called geopolymers

Mine Tailings + Alkali (NaOH) + Water = Geopolymer

Reaction proceeds at room or slightly elevated temperature

Geopolymerization consists of 2 basic steps:

(1) Dissolution of solid aluminosilicate oxides by alkali to produce small reactive silica and alumina

(2) Polycondensation process leading to formation of amorphous to semicrystalline polymers

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

GEOPOLYMER CONCRETE : A REVIEW OF DEVELOPMENT AND

OPPORTUNITIES

N A Lloyd*, Curtin University of Technology, Australia

B V Rangan, Curtin University of Technology, Australia

Abstract

Geopolymer results from the reaction of a source material that is rich in silica

and alumina with alkaline liquid. It is essentially cement free concrete. This material is being studied extensively and shows promise as a greener substitute for ordinary

Portland cement concrete in some applications. Research is shifting from the chemistry domain to engineering applications and commercial production of geopolymer concrete. It has been found that geopolymer concrete has good engineering properties with a reduced global warming potential resulting from the total replacement of ordinary Portland cement. The research undertaken at Curtin University of Technology has included studies on geopolymer concrete mix design, structural behavior and durability.

This paper presents the results from studies on mix design development to enhance

workability and strength of geopolymer concrete. The influence of factors such as,

curing temperature and régime, aggregate shape, strengths, moisture content,

preparation and grading, on workability and strength are presented. The paper also

includes brief details of some recent applications of geopolymer concrete.

Keywords: alumino-silicate binder; cement replacement; geopolymer; fly-ash; mix design;

precast concrete

 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

LOW CALCIUM FLY ASH GEOPOLYMER CONCRETE �

A PROMISING SUSTAINABLE ALTERNATIVE FOR RIGID

CONCRETE ROAD FURNITURE

D S Cheema, Main Roads, Western Australia

ABSTRACT

Geopolymer is a material resulting from the reaction of a source material that is rich in silica and alumina with alkaline solution. This material has been studied extensively over the past few decades and shows promise as a greener alternative to ordinary Portland cement concrete. It has been found that geopolymer has good engineering properties with a reduced carbon footprint resulting from the zero-cement content. Durability parameters depend on the pore structure of concrete matrix. Tests performed to measure compressive strength, volume of permeable void, pore structure and permeability have shown that low calcium fly ash based geopolymer concrete has the potential to be a promising sustainable alternative for rigid concrete road furniture, such as, rigid safety barrier, kerbing, traffic island infill, dual use path (DUP) and parking bay rest areas paving etc with a significant environmental benefits compared to Portland Cement concrete. The research paper highlights potential applications of low calcium fly ash geopolymer (LCFG)

concrete in non aggressive to mild environments.

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Engineering Fly Ash-based

Geopolymer Concrete

E. Ivan Diaz-Loya Ph.D. Candidate

Erez N. Allouche Ph.D., P.E.

Geopolymers

The source of Si & Al for geopolymers can be any mineral

(e.g. metakaolin) or by-product (e.g. fly ash)

The positive ion is usually provided by a hydroxide solution of Na or K, etc.

Water glass provides the monomers from which the polymeric chains grow.

In most cases a slightly elevated temperature is required to kick start the geopolymerization reaction

Geopolymerization

Geopolymeric reaction occurs can be divided into three steps:

1. Dissolution of species - Si and Al dissolve in the alkaline media providing monomers.

2. Transportation/Initial gelation- Orientation of the precursors takes place.

3. Condensation/setting- Hydrolyzed aluminate and silicate species policondensate and harden.

MIXING

Geopolymer paste can be mixed with the same aggregates used for Portland

cement for use as mortar or cement, its concrete.

ACTIVATOR  SOLUTION + FLY ASH  + FINE & COARSE AGGREGATES

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 

 Geopolymer Concrete

Geopolymer concrete�an innovative material that is characterized by long chains or networks of inorganic molecules�is a potential alternative to conventional port­land cement concrete for use in transportation infrastructure construction. It relies on minimally processed natural materials or industrial byproducts to significantly reduce its carbon footprint, while also being very resistant to many of the durabil­ity issues that can plague conventional concrete. However, the development of this material is still in its infancy, and a number of advancements are still needed. This TechBrief briefly describes geopolymer concrete materials and explores some of their strengths, weaknesses, and potential applications.

Introduction

Geopolymer materials represent an innovative technology that is generat­ing considerable interest in the construction industry, particularly in light of the ongoing emphasis on sustainability. In contrast to portland cement, most geopolymer systems rely on minimally processed natural materials or industrial byproducts to provide the binding agents. Since portland cement is responsible for upward of 85 percent of the energy and 90 percent of the carbon dioxide attributed to a typical ready-mixed concrete (Marceau et al. 2007), the potential energy and carbon dioxide savings through the use of geopolymers can be considerable. Consequently, there is growing interest in geopolymer applications in transportation infrastructure.

Although geopolymer technology is considered new, the technology has ancient roots and has been postulated as the building material used in the construction of the pyramids at Giza as well as in other ancient construction (Davidovits 1984; Barsoum and Ganguly 2006; Davidovits 2008). More­over, alkali-activated slag cement is a type of geopolymer that has been in use since the mid-20th century.

What Is a Geopolymer?

The term geopolymer was coined by Davidovits in 1978 to represent a broad range of materials characterized by chains or networks of inorganic mol­ecules (Geopolymer Institute 2010). There are nine different classes of geo­polymers, but the classes of greatest potential application for transportation infrastructure are comprised of aluminosilicate materials that may be used to completely replace portland cement in concrete construction (Davidovits 2008). These geopolymers rely on thermally activated natural materials (e.g., kaolinite clay) or industrial byproducts (e.g., fly ash or slag) to provide a source of silicon (Si) and aluminum (Al), which is dissolved in an alka­line activating solution and subsequently polymerizes into molecular chains

and networks to create the hardened binder. Such systems are often referred to as alkali-activated ce­ments or inorganic polymer cements.

As stated by Rangan (2008), �the polymerization process involves a substantially fast chemical reac­tion under alkaline conditions on silicon-aluminum minerals that results in a three-dimensional poly­meric chain and ring structure�.� The ultimate structure of the geopolymer depends largely on the ratio of Si to Al (Si:Al), with the materials most of­ten considered for use in transportation infrastruc­ture typically having an Si:Al between 2 and 3.5 (Hardjito et al. 2004; Davidovits 2008). This type of geopolymer will take one of the following three basic forms (where �sialate� is an abbreviation for silicon-oxo-aluminate) (Davidovits 2008):

Poly (sialate) Si:Al = 1, which has [-Si-O-Al- � O-] as the repeating unit.

Poly (sialate-siloxo) Si:Al = 2, which has [-Si- � O-Al-O-Si-O-] as the repeating unit.

Poly (sialate-disiloxo) Si:Al = 3, which has � [-Si-O-Al-O-Si-O-Si-O-] as the repeating unit.

Although the mechanism of polymerization is yet to be fully understood, a critical feature is that water is present only to facilitate workability and does not become a part of the resulting geopolymer structure. In other words, water is not involved in the chemi­cal reaction and instead is expelled during curing and subsequent drying. This is in contrast to the hy­dration reactions that occur when portland cement is mixed with water, which produce the primary hydration products calcium silicate hydrate and cal­cium hydroxide. This difference has a significant im­pact on the mechanical and chemical properties of the resulting geopolymer concrete, and also renders it more resistant to heat, water ingress, alkali�aggre­gate reactivity, and other types of chemical attack (Davidovits 2008; Lloyd and Rangan 2009).

Conceptually, the formation of geopolymers is quite simple. In the case of geopolymers based on aluminosilicate, suitable source materials must be rich in amorphous forms of Si and Al, including those processed from natural mineral and clay de­posits (e.g., kaolinite clays) or industrial byproducts (e.g., low calcium oxide ASTM C618 Class F fly ash

or ground granulated blast furnace slag) or combina­tions thereof. In the case of geopolymers made from fly ash, the role of calcium in these systems is very important, because its presence can result in flash setting and therefore must be carefully controlled (Lloyd and Rangan 2009). The source material is mixed with an activating solution that provides the alkalinity (sodium hydroxide or potassium hydrox­ide are often used) needed to liberate the Si and Al and possibly with an additional source of silica (so­dium silicate is most commonly used).

The temperature during curing is very important, and depending upon the source materials and ac­tivating solution, heat often must be applied to fa­cilitate polymerization, although some systems have been developed that are designed to be cured at room temperature (Hardjito et al. 2004; Davidovits 2008; Rangan 2008; Tempest et al. 2009). Figure 1, for example, shows the compressive strength of two geopolymer mixtures, illustrating the importance of curing temperature on 7-day strength development (Hardjito et al. 2004).

ExistingApplications

To date, there are no widespread applications of geopolymer concrete in transportation infrastruc­ture, although the technology is rapidly advanc­ing in Europe and Australia. One North American geopolymer application is a blended portland-geopolymer cement known as Pyrament® (pat­ented in 1984), variations of which continue to be successfully used for rapid pavement repair. Other portland-geopolymer cement systems may soon emerge. In addition to Pyrament®, the U.S. military is using geopolymer pavement coatings designed to resist the heat generated by vertical takeoff and landing aircraft (Hambling 2009).

In the short term, there is potential for geopoly­mer applications for bridges, such as precast struc­tural elements and decks as well as structural retro­fits using geopolymer-fiber composites. Geopolymer technology is most advanced in precast applications due to the relative ease in handling sensitive mate­rials (e.g., high-alkali activating solutions) and the need for a controlled high-temperature curing en­vironment required for many current geopolymer

systems. To date, none of these potential applica­tions has advanced beyond the development stage, but the durability attributes of geopolymers make them attractive for use in high-cost, severe-environ­ment applications such as bridges. Other potential near-term applications are precast pavers and slabs for paving.

Current Limitations

Although numerous geopolymer systems have been proposed (many are patented), most are difficult to work with and require great care in their produc­tion. Furthermore, there is a safety risk associated with the high alkalinity of the activating solution, and high alkalinity also requires more processing, resulting in increased energy consumption and greenhouse gas generation. In addition, the polym­erization reaction is very sensitive to temperature and usually requires that the geopolymer concrete be cured at elevated temperature under a strictly controlled temperature regime (Hardjito et al. 2004; Tempest et al. 2009; Lloyd and Rangan 2009). In many respects, these facts may limit the practical use of geopolymer concrete in the transportation infrastructure to precast applications.

Considerable research is under way to develop geopolymer systems that address these technical hurdles, creating a low embodied energy, low car­bon  dioxide binder that has simi­lar properties to portland cement. In addition, current research is focusing on the development of user-friendly geopolymers that do not require the use of highly caustic activating solutions.

Future Developments

User-friendly geopolymer ce­ments that can be used under conditions similar to those suit­able for portland cement are the current focus of extensive world-wide research efforts. These ce­ments must be capable of being mixed with a relatively low-alkali activating solution and must cure in a reasonable time under ambient conditions (Da­vidovits 2008). Until such cements are developed, geopolymer applications in transportation infra­structure will be limited. The production of versa­tile, cost-effective geopolymer cements that can be mixed and hardened essentially like portland ce­ment would represent a �game changing� advance­ment, revolutionizing the construction of transpor­tation infrastructure.

References

Barsoum, M. W., and A. Ganguly. 2006. �Microstructural Evidence of Reconstituted Limestone Blocks in the Great Pyramids of Egypt.� Journal of the American Ceramics Society, 89. Wiley-Blackwell, Malden, MA.

Davidovits, J. 1984. �Pyramids of Egypt Made of Man- Made Stone, Myth or Fact?� Symposium on Archaeometry 1984. Smithsonian Institution, Washington, DC.

Davidovits, J. 2008. Geopolymer Chemistry and Applications. Institut Géopolymère, Saint-Quentin, France.

Geopolymer Institute. 2010. What Is a Geopolymer? Introduction. Institut Géopolymère, Saint-Quentin, France. Accessed on January 29, 2010, at http://www.geopolymer.org/science/introduction.

Hambling, D. 2009. �Cool Under Pressure: Geopolymers Offer Diverse Structural Benefits.� Defense Technology International, September/October 2009. Defense Technology International, Washington, DC.

Hardjito, D., S. Wallah, D. M. J. Sumajouw, and B. V. Rangan. 2004. �On the Development of Fly Ash�Based Geopolymer Concrete.� ACI Materials Journal, vol. 101, no. 6, pp. 467�472.

Lloyd, N., and V. Rangan. 2009. �Geopolymer Concrete�Sustainable Cementless Concrete.� ACI Special Publication SP-261, 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues. American Concrete Institute, Farmington Hills, MI.

Marceau, M., M. Nisbet, and M. VanGeem. 2007. Life Cycle Inventory of Portland Cement Concrete. PCA R&D Serial No. 3011. Portland Cement Association, Skokie, IL.

Rangan, B. V. 2008. �Low-Calcium, Fly-Ash-Based Geopolymer Concrete.� Concrete Construction Engineering Handbook. Taylor and Francis Group, Boca Raton, FL.

Tempest, B., O. Sanusi, J. Gergely, V. Ogunro, and D. Weggel. 2009. �Compressive Strength and Embodied Energy Optimization of Fly Ash Based Geopolymer Concrete.� Proceedings, 2009 World of Coal Ash Conference, Lexington, KY.

Figure 1. Effect of curing temperature on 7-day compressive strength for two geopolymer concretes. (Hardjito et al. 2004, p. 469, © 2004 American Concrete Institute. Reprinted by permission.)

 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

František Škvára, Josef Doležal, Pavel Svoboda, Lubomír Kopecký,

Simona Pawlasová, Martin Lucuk, Kamil Dvořáček, Martin Beksa,

Lenka Myšková, Rostislav Šulc

Concrete based on fly ash geopolymers

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

CHEMICAL RESISTANCE OF GEOPOLYMER

CONCRETE AGAINST H2SO4 & NaOH

A dissertation submitted by

Brock William Tomkins

in fulfilment of the requirements of

Courses ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Engineering/Business

(Civil/Supply Chain Management)

Submitted: October, 2011

Abstract

The purpose of this project is to develop innovative environmental green concretes and study their performance, particularly the chemical resistance. The concretes under investigation include fly-ash based geopolymer concrete (FAGC) and red-mud based geopolymer concrete (RMGC). The chemical resistance tests involve sodium hydroxide and sulphuric acid at 20OC and 90OC. To understand the relative significance of these results, they are contrast alongside the performance of ordinary Portland cement concrete (OPC) in the same conditions. Geopolymer concrete is the name given to concrete where the binder is entirely replaced by an inorganic polymer formed between a strong alkaline solution and an aluminosilicate

source. The ratio and quantity of alkaline solution used can affect � amongst other factors � the concrete strength and curing time. Aluminosilicate sources include but are not limited to red-mud, fly-ash, blast furnace slag and kaolin. The variability of geopolymer binders and activators increase the difficulty of manufacturing a homogenous and universal geopolymer concrete standard. Currently, geopolymer concrete exhibits as good as, and in some areas superior engineering properties to normal concrete. Carbon emissions can be significantly reduced by using aluminosilicate geopolymer binders instead of Portland cement (which releases 1 t of CO2 per tonne of production). Compared to Portland cement, fly-ash based geopolymer concrete can reduce carbon emissions by 80% which has the potential to reduce global emissions by approximately 2.1 billion tonnes a year. This is equivalent to taking two thirds of global traffic off the roads each year. In this project OPC, FAGC and RMGC samples were cast in 200x100mm cylindrical moulds.

After these samples cured for a minimum of 14 days, chemical testing began. The samples were submerged for 7, 14, 28 and 56 days, sulphur capped and compression tested. Results comprised the analysis of testing data, macro analysis and microscopy. Results indicated OPC experienced some strength deterioration in both an acid environment (-24.9 to -25.6%) and an alkaline environment (-2.2 to -13.3%). FAGC was found to have better acid resistance (+3.8 to -17.6%) and even experienced strength enhancement in sodium hydroxide (+29.1 to +55.7%). Interestingly, RMGC exhibited a strength increase of 52.4% in sulphuric acid while also displaying strength enhancement of +50.5% in sodium hydroxide. This performance suggests that FAGC and RMGC are both suitable replacements

for the existing bunding slab at QAL.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 

 

���Իѭ������Ѳ��
 Budding Wisdom

��Ѻ��鹺�